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EXECUTIVE SUMMARY 

• WithSecure has uncovered a novel backdoor that has been used in attacks against victims in Eastern Europe since at least mid-2022. 

• The malware, which we are calling "Kapeka", is a flexible backdoor with all the necessary functionalities to serve as an early-stage 

toolkit for its operators, and also to provide long-term access to the victim estate. 

• The malware's victimology, infrequent sightings, and level of stealth and sophistication indicate APT-level activity. 

• WithSecure discovered overlaps between Kapeka, GreyEnergy, and Prestige ransomware attacks which are all reportedly linked to a 

group known as Sandworm. WithSecure assesses it is likely that Kapeka is a new addition to Sandworm’s arsenal. Sandworm is a 

prolific Russian nation-state threat group operated by the Main Directorate of the General Staff of the Armed Forces of the Russian 

Federation (GRU). Sandworm is particularly notorious for its destructive attacks against Ukraine in pursuit of Russian interests in the 

region. 

• Kapeka contains a dropper that will drop and launch a backdoor on a victim’s machine and then remove itself. The backdoor will first 

collect information and fingerprint both the machine and user before sending the details on to the threat actor. This allows tasks to 

be passed back to the machine or the backdoor’s configuration to be updated. WithSecure do not have insight as to how the Kapeka 

backdoor is propagated by Sandworm. 

• Kapeka’s development and deployment likely follow the ongoing Russia-Ukraine conflict, with Kapeka being likely used in targeted 

attacks of firms across Central and Eastern Europe since the illegal invasion of Ukraine in 2022.  

• It is likely that Kapeka was used in intrusions that led to the deployment of Prestige ransomware in late 2022. 

• It is probable that Kapeka is a successor to GreyEnergy, which itself was likely a replacement for BlackEnergy in Sandworm’s arsenal. 
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BACKGROUND 
In mid-2023 WithSecure found several artifacts observed in an intrusion set likely linked to Russian APT activity. One of these artifacts was an 

unknown backdoor/dropper detected in an Estonian logistics company in late 2022.  

Upon analysis, we found two additional versions of the dropped backdoor submitted to VirusTotal from Ukraine in mid-2022 and mid-2023, one 

of which was packaged with a scheduled task file from an infected machine that launched the backdoor. We assessed with moderate confidence 

that the submitters were victims. 

Based on these sparse data points, several preliminary assessments were made: 

• No previous variants of the backdoor have been observed or publicly reported. 

• The backdoor was rarely sighted, hence indicating that it has been used in limited scope attacks since at least mid-2022. 

• Based upon victimology, the backdoor was likely used in campaigns specifically targeting victims in Eastern Europe. 

Based on the rarity of the backdoor, its characteristics, and sightings in Eastern Europe, we made an initial assessment with low confidence that 

the backdoor, which we have dubbed “Kapeka” (‘little stork’ in Russian), is likely a bespoke tool used by an advanced persistent actor (APT) possibly 

of Russian origin in targeted attacks in Eastern Europe. This was later corroborated by Microsoft, who detect this malware as KnuckleTouch1, and 

attribute it to Seashell Blizzard (better known as Sandworm). This is in-line with historical and current (including post 2022 Russian invasion of 

Ukraine) targeting and activities linked to Sandworm group, who are known to support the wider strategic objectives and changing intelligence 

requirements of the Russian state. 

While examining the possible link between the backdoor and the Sandworm group, WithSecure noted overlaps between Kapeka and GreyEnergy, 

a toolkit thought to be associated with the Sandworm group. Additionally, we discovered connections between Kapeka, GreyEnergy, and Prestige 

ransomware attacks that occurred in late 2022. 

This report provides an in-depth technical analysis of the backdoor and its capabilities, and analyzes the connection between Kapeka and 

Sandworm group. The purpose of this report is to raise awareness amongst businesses, governments, and the broader security community. 

WithSecure has engaged governments and select customers with advanced copies of this report. In addition to the report, we are releasing several 

artifacts developed as a result of our research, including a registry-based & hardcoded configuration extractor, a script to decrypt and emulate the 

backdoor’s network communication, and as might be expected, a list of indicators of compromise, YARA rules, and MITRE ATT&CK mapping.  

 
1 https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Backdoor:Win64/KnuckleTouch.A!dha 

https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Backdoor:Win64/KnuckleTouch.A!dha
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Figure 1. Overview of Kapeka 
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DROPPER ANALYSIS 
The Kapeka dropper is a 32-bit Windows executable responsible for dropping, executing, and setting up persistence for the backdoor on a victim’s 

machine as well as removing itself from disk. The backdoor binary, which is embedded within its resource section, is encrypted via AES-256. The 

dropper’s resource section contains both 32-bit and 64-bit version of the backdoor and chooses the appropriate version depending on the victim 

machine’s processor. The dropper utilizes an embedded key to decrypt the binary. However, if the embedded key is not set, then it defaults to 

using the command line string as the key for decryption. Figure 2 shows code snippet used to extract and decrypt the appropriate backdoor binary 

from the dropper’s resource section. 
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Figure 2. Code snippet to decrypt backdoor file from dropper's resource section 

Depending on the process privileges, the decrypted backdoor binary is dropped as a hidden file under a folder called Microsoft in either 

CSIDL_COMMON_APPDATA (if admin or SYSTEM) or CSIDL_LOCAL_APPDATA (if not). Note: CSIDL_COMMON_APPDATA is typically 

“C:\ProgramData” and CSIDL_LOCAL_APPDATA is typically “C:\Users\<username>\AppData\Local”. The file name is 5-6 characters long and is 

randomly generated from consonants and vowels (to make it appear like a legitimate word) followed by a “.wll” extension. It is worth noting that 

the dropper looks for SensApi.dll (a legitimate Windows DLL) under system directory and modifies the file time attributes of the dropped backdoor 

binary to match the legitimate DLL by using SetFileTime().  
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The dropper will then launch the backdoor binary by calling rundll32 and passing the backdoor’s first export ordinal (#1) with a “-d” argument. 

Figure 3 shows an example of the command line used to launch the backdoor. 

 

Figure 3. Example of dropper launching the backdoor 

Depending on the process privileges, the dropper then sets persistence for the backdoor either as a scheduled task (if admin or SYSTEM) or autorun 

registry (if not). For the scheduled task, it creates a scheduled task called “Sens Api” via schtasks command, which is set to run upon system startup 

as SYSTEM. To establish persistence through the autorun utility, it adds an autorun entry called “Sens Api” under 

HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Run via the ‘reg add’ command. Both persistence mechanisms are set to launch the binary 

by calling rundll32 and passing the backdoor’s first export ordinal (#1) without any additional argument. Figure 4 shows code snippet used to 

create the appropriate persistence mechanism. 
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Figure 4. Code snippet to add persistence 

WithSecure identified a Kapeka scheduled task file in-the-wild from an infected machine. The scheduled task was called “OneDrive” instead of 

“Sens Api” that is created by the dropper binaries analyzed. Furthermore, the backdoor name (wslsrv) in this instance did not follow the same 

name generation method (using consonants and vowels) found in the dropper binaries analyzed and the command line to launch was slightly 

different. Figure 5 shows the execution command line seen in this instance versus an example from a scheduled task created by the dropper. 
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Figure 5. Kapeka execution command from scheduled task seen in-the-wild called "OneDrive" versus “Sens Api” created by the dropper 

Lastly, the dropper will drop a hidden batch file into CSIDL_LOCAL_APPDATA and launch it, which will delete the dropper from disk. The file name 

is 3-4 characters long and is generated with the same name generation algorithm used for the backdoor. If the user is an administrator, the batch 

file will be set to be removed upon reboot by calling MoveFileExW()and setting dwFlags as MOVEFILE_DELAY_UNTIL_REBOOT and lpNewFileName 

as NULL. Figure 6 shows the file content of the dropped batch file. 

 

Figure 6. File content of dropped batch script  
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BACKDOOR ANALYSIS 
The Kapeka backdoor is a Windows DLL containing one function which has been exported by ordinal2 (rather than by name). The backdoor is 

written in C++ and compiled (linker 14.16) using Visual Studio 2017 (15.9). The backdoor file masquerades as a Microsoft Word Add-In with its 

extension (.wll), but in reality it is a DLL file. 

The backdoor is meant to be executed with “-d” argument for its initial run, but without it for subsequent runs (which is achieved via the 

persistence method mentioned in earlier section “Dropper analysis”). The purpose of this flag is explained in subsequent sections. 

Like many other backdoors, the backdoor implementation is multi-threaded, utilizing event objects3 for data synchronization and signaling across 

threads. In total, the backdoor launches four main threads:  

• First thread: This is the primary thread which performs the initialization and exit routine, as well as C2 polling to receive tasks or 

an updated C2 configuration. 

• Second thread: Monitors for Windows log off events, signaling the primary thread to perform the backdoor’s graceful exit routine 

upon log off. 

• Third thread: Monitors for incoming tasks to be processed. This thread launches subsequent threads to execute each received 

task. 

• Fourth thread: Monitors for completion of tasks to send back the processed task results to the C2. 

In terms of data handling, the backdoor utilizes a large principal structure to hold all its subsequent data objects and structures, including 

thread/mutex/object handles. Furthermore, the backdoor utilizes JSON (implemented using ‘rapidjson’ library) to hold its data (such as C2 

configuration and tasks received) internally as well as to send and receive information from its command-and-control server. In total there are 36 

unique JSON keys which span over several JSON structures, which have been detailed in later sections. Each JSON key is obfuscated and 6-

characters long. The obfuscated field names have not changed between the samples we have analyzed. Figure 7 shows examples of obfuscated 

JSON field names seen in the backdoor. 

 
2 https://learn.microsoft.com/en-us/cpp/build/exporting-functions-from-a-dll-by-ordinal-rather-than-by-name 
3 https://learn.microsoft.com/en-us/windows/win32/sync/using-event-objects 

https://learn.microsoft.com/en-us/windows/win32/sync/using-event-objects
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Figure 7. Example of obfuscated JSON field names 

For encryption and encoding, the backdoor utilizes three separate methods throughout its execution, namely: AES-256 (CBC mode), XOR, and RSA-

2048, with the RSA public key changing between samples. 

Backdoor configuration 

The backdoor contains an embedded C2 configuration that is encrypted via AES-256. The configuration consists of a 32-byte key followed by an 8-

byte padding and the encrypted configuration data. The configuration is decrypted during the backdoor’s initialization phase. The backdoor also 

reads any existing configuration that’s persisted in registry during its initialization phase. Depending on whether the backdoor is launched with 

the ‘-d’ argument and existing configuration in registry, the backdoor chooses which configuration to use. If ‘-d’ argument (which indicates first 

run) is provided, the backdoor will favor its embedded configuration, otherwise it will read existing configuration from registry, falling back to the 

embedded configuration if unavailable. 
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The backdoor persists its configuration via a registry value called “Seed” in “HKU\<SID>\Software\Microsoft\Cryptography\Providers\<GUID>\”. 

To generate the GUID value, the malware calls GetCurrentHwProfileW() and fetches the szHwProfileGuid field. In earlier versions of the backdoor, 

the malware would simply use the fetched value as GUID, however in the latest version of the backdoor we have analyzed the malware contains 

a custom algorithm implementing CRC32 and PRNG (pseudo-random number generator) operations applied to the GUID and a hardcoded value 

in the binary (described in a later section as “LSmL1j”) to generate a unique GUID. In all versions of the backdoor, the backdoor will default to a 

hardcoded GUID value (“0CA1BE92-FB73-BB74-5E41-00FDE76B2E8D”) if GetCurrentHwProfileW() fails. The backdoor uses the same algorithm to 

generate its mutex as “Global\BFE_Notify_Event_<GUID>”, but the fallback value is “{ad584834 - f1b9 - 1587 - 637b - 1e0025582179}” instead. 

The persisted configuration is encrypted via AES-256 with a key consisting of 32-bytes of MachineGuid (UTF-16) value from 

HKLM\SOFTWARE\Microsoft\Cryptography, falling back to a hardcoded 32-byte key “Azbi3l1xIgcRzTsOHopgrwUdJUMWpOFt” if the registry key 

query fails. An example has been shown in figure 8. 

 

Figure 8. Example of encrypted configuration persisted in registry value “Seed” 

Both the embedded and persisted configuration are encoded in JSON format. The C2 configuration JSON structure has been described in figure 9. 

An example of the C2 configuration is shown in figure 10. 

JSON Key Value type Value 

GafpPS Nested 
object 

Holds the C2 configuration components mentioned below. 

LsHsAO Array C2 Server URLs (required). This is the only mandatory field for the backdoor’s 
embedded configuration. 
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hM4cDc Integer C2 polling interval (minutes) – The actual polling interval is randomized each time 
between the specified amount and next minute. If not present, the default amount is 
10 minutes. 

nLMNzt Integer Maximum alive time (days) – The maximum number of days the backdoor will try 
connecting to the C2 since its initialization or last successful C2 poll before uninstalling 
itself. If not present, the default amount is 3 days. 

rggw8m Nested 
object 

Holds the system time structure4 objects mentioned below. The values are generated 
& updated at runtime by the backdoor using GetSystemTimeAsFileTime(). This 
essentially keeps track of the backdoor’s alive time and last successful C2 poll. This is 
included in the persisted configuration in registry.  

bhpaLg Integer System time (Low-order part) 

sEXtXs Integer System time (High-order part) 
Figure 9. C2 configuration JSON structure 

 

Figure 10. Example of C2 configuration 

 
4 https://learn.microsoft.com/en-us/windows/win32/api/minwinbase/ns-minwinbase-filetime 
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Initial fingerprinting 

During its initialization phase, the backdoor collects information about the victim’s machine and user through a set of WinAPI calls and registry 

queries. This information is stored internally within a defined structure, which is later converted into a JSON format. The backdoor forwards this 

JSON blob in its first and subsequent communication with the threat actor’s command-and-control server. 

Figure 11 shows a complete list of information gathered from the victim’s machine, collection method, and JSON key mapping. An example of 

JSON holding fingerprinted information is shown in figure 12.  

JSON Key Information (Value) Collection method 

KBXZSb Username GetUserNameW() 
Overwritten by NetUserGetInfo() -> USER_INFO_1. usri1_name 

Cwiq4j User privileges NetUserGetInfo() -> USER_INFO_1.usri1_priv  

KKGCUr Token elevation type GetTokenInformation() -> TokenElevationType  

arqSO1 Computer name NetWkstaGetInfo() -> WKSTA_INFO_100.wki100_computername 

pHsy0J Domain name NetWkstaGetInfo() -> WKSTA_INFO_100.wki100_langroup 

ozYekP OS Major Version NetWkstaGetInfo() -> WKSTA_INFO_100.wki100_ver_major 

8ORGRb OS Minor Version NetWkstaGetInfo() -> WKSTA_INFO_100.wki100_ver_minor 

b0HqGu ProductName HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\ProductName 

xsRMVc Processor Architecture GetNativeSystemInfo() -> SYSTEM_INFO. wProcessorArchitecture 

q200c6 CSDVersion HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\CSDVersion 

RAJ5MJ ProductId HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\ProductId 

7N4QJp RegisteredOwner HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\RegisteredOwner 

tczMsk RegisteredOrganization HKLM\SOFTWARE\Microsoft\Windows 
NT\CurrentVersion\RegisteredOrganization 

GQKkuo UnknownFlag GetVersionExW(&OSVERSIONINFOEXW) 
This flag is set as 1 if the API call is successful. The exact reason is unknown, but it 
is likely an OS check. 

Wqk8xK Windows Server 2003 R2 
Build Number 

GetSystemMetrics(89) -> SM_SERVERR2 
This can serve as a check whether the OS is Windows Server 2003 R2. 

eEM2N9 System Locale - Language GetLocaleInfoW() -> LOCALE_SISO3166CTRYNAME  

NPvllV System Locale - Country GetLocaleInfoW() -> LOCALE_SISO639LANGNAME  
Figure 11. Information collected, method, and JSON mapping. 
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Figure 12. Example of JSON holding collected information 

Network communication 

The backdoor uses WinHttp 5.1 COM interface (winhttpcom.dll) to implement its network communication component. The backdoor 

communicates with its C2 to poll for tasks and to send back fingerprinted information and task results. The backdoor utilizes JSON to send and 

receive information from its C2.  

Two separate threads are responsible for network communication, one to send fingerprinted information and poll for tasks, and another to send 

completed tasks results back to the C2. Both threads implement the same request/response handler. The request JSON structure has been 

described in figure 13. An example of C2 request JSON is shown figure 14. 

JSON Key Value type Value 

jxs2HZ Integer Integer value distinguishing between the C2 poller (value 0) and response handler 
(value 1) thread.  

LSmL1j String 16-byte hexadecimal string that’s hardcoded inside the binary. The exact purpose of 
this string is unknown. However, it is most likely a form of campaign/build identifier. 
For instance, to distinguish between private RSA keys to use for decryption. 
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SIsKba Nested 
object 

This holds the fingerprinted information that has been mentioned in section “Initial 
fingerprinting”. 

jRcZrx Nested 
object 

This holds the output for each of the executed backdoor tasks. This is only populated 
when task results are available to be sent to the C2. This structure is described further 
in section “Backdoor tasks”. 

Figure 13. C2 request JSON structure 

 

Figure 14. Example of C2 request JSON 

The backdoor uses a custom structure to format the data (figure 13) it sends to its C2. Figure 15 shows an annotated example of the C2 request 

structure. The custom structure is generated via the following steps: 

• Generate a random 32-byte AES key that’s used to encrypt the JSON data to be sent. 

• Encrypt the JSON data using the randomly generated AES key. 

• Store encrypted data size formatted using htonl() 

• Encrypt the 32-byte AES key with the RSA-2048 public key that’s embedded in the binary. 

• Store encrypted key size formatted using htonl() 

• Generate an arbitrary amount of random data. 

• Arrange the data as: 

<SIZEOFENCRYPTEDKEY><ENCRYPTEDKEY><SIZEOFENCRYPTEDJSONDATA><ENCRYPTEDJSONDATA><APPENDEDRANDOMDATA> 

• Generate a 4-byte XOR key. 

• XOR the data structure using the generated XOR key. 

• Prepend the XOR key to the data structure. 

• Send the final data structure to the C2. 
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Figure 15. Example of annotated C2 request structure 

The backdoor will re-use the same randomly generated 32-byte AES key to decrypt the response it receives. The backdoor can receive two types 

of responses, one to update its configuration and another to execute tasks, both of which have been described in later sections. 

Moreover, the backdoor checks for internet proxy settings using WinHttpGetIEProxyConfigForCurrentUser() during its initialization phase and C2 

polling. If a proxy setting exists, the backdoor will use the specified proxy server for its C2 communication. This functionality was only observed in 

the latest version of the backdoor analyzed. 

Lastly, while the backdoor makes use of WinHttp 5.1 COM interface, we identified unused code snippets implementing XML HTTP 6.0 COM 

interface. Figure 16 shows a list of COM interfaces implemented by the backdoor, including XML HTTP 6.0 as well as WinHttp 5.1. 
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Figure 16. COM interfaces implemented in backdoor, highlighting WinHttp 5.1 COM interface. 

Update C2 configuration 

The backdoor can update its C2 configuration by receiving a new configuration as a JSON response (with key “GafpPS”) from its command-and-

control server during polling. If the received configuration differs from the existing configuration, the backdoor will update its configuration on-

the-fly as well as persist the latest C2 configuration by updating the registry value (“Seed”) that holds its configuration. 

Backdoor tasks 

The backdoor can execute tasks on the victim’s machine by receiving a list of tasks as a JSON response (with key “Td7opP”) from its command-

and-control server during polling, spawning a separate thread to execute each task. 

Figure 17 shows the C2 response JSON structure that houses the tasks and data associated to each task. An example of C2 response JSON with 

received tasks is shown in figure 18. 

JSON Key Value type Value 

Td7opP Array This holds a list of backdoor tasks to be executed on the victim’s 
machine. Each task holds the key/value pairs mentioned below. 

CwbJ4E Integer Command ID to execute (zero-based number). See figure 19 for full list 
of supported command IDs. 

XVXLNm String First argument 
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Used mainly for file name/command line to read, write, launch. 

INlB5x Nested object Second argument 
Used for payload purposes, such as upgrading backdoor or writing a file 
to disk. This holds a key/value pair with the key being the filename and 
the value being the file content that’s base64-encoded. 

J8yWIG String Identifier string that can be passed to distinguish between executed 
commands, this is logged in the output sent back to the command-and-
control as “3qY9vY”. 

Figure 17. C2 response JSON structure 

 

Figure 18. Example of C2 response JSON with received tasks 

The backdoor supports all basic functionalities that allow it to operate as a flexible backdoor in the victim’s estate. Figure 19 shows the list of 

commands supported by the backdoor. 
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Command ID Command Required parameters 

0 NotImplemented - 

1 Uninstall backdoor - 

2 Read file from disk XVXLNm – File path to read 

3 Write to file on disk XVXLNm – File path to write 
INlB5x – File content to write 

4 Launch process or payload XVXLNm – Command line to process & 
launch 
INlB5x (optional) – Custom payload 

5 Execute shell command XVXLNm – Shell command to launch 

6 Upgrade backdoor - 

Other Return “unknown\n” - 
Figure 19. Supported commands 

Once the tasks are completed, the results are sent back to the command-and-control server in JSON format (under key “jRcZrx”). Figure 20 shows 

the JSON structure that houses the task results sent back to the command-and-control server. An example of C2 response containing task results 

is shown in figure 21. 

JSON Key Value type Value 

jRcZrx Array This holds a list of results for executed tasks. Each result holds the key/value pairs 
mentioned below. 

3qY9vY String Identifier string that was passed in the command input as “J8yWIG” 

36d6Mo String Logged message during task execution 

RzYnkr Nested 
object 

This holds a key/value pair that’s used during read file task, with the key being the 
filename and the value being the file content that’s base64-encoded. 

Figure 20. Completed task results JSON structure 
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Figure 21. Example of C2 response containing task results 

Uninstall backdoor 

This functionality removes all backdoor artifacts from the victim’s machine by launching several shell commands combined via ampersands through 

the functionality “Launch process or payload” mentioned in a later section. Figure 22 shows an example of C2 response to uninstall the backdoor. 
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Figure 22. Example of C2 response to uninstall the backdoor 

The set of commands include: 

• Sleeping for 10 seconds via ping command, allowing adequate time for the process to terminate before file deletion. 

• Deleting persistence set by the dropper by issuing ‘schtasks delete’ or ‘reg delete’ command depending on process elevation. All 

analyzed backdoor samples deleted the same scheduled task/registry value called “Sens Api”.  

• Deleting the backdoor executable via erase command with /f /q and /a:h flags. 

The task thread will then set the main event object that’s used for synchronization across the process to a signaled state, which causes the backdoor 

to run its graceful exit routine. However, before doing so it sets a global flag that causes the exit routine to delete the registry key that persists the 

backdoor’s configuration on the victim’s machine. Figure 23 shows the usage of SHDeleteKeyW() by Kapeka to delete its persisted configuration. 

 

Figure 23. Kapeka removing its persisted configuration 
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Read file from disk 

This functionality reads any file that’s below 50 MB from disk and sends the output back to the C2, essentially enabling data collection from the 

victim’s machine. The file to be read is specified under the first argument (“XVXLNm”). Figure 24 shows an example of C2 response to read a file 

from the victim’s machine. 

 

Figure 24. Example of C2 response to read from file 

If the operation succeeds, it logs a success message “<filename> OK\n” and sends back the file content as key/value pair underneath a key called 

“RzYnkr”, with the key being the filename, and value being the base64-encoded file content. 

In case of an error, the error message is fetched via GetLastError() and logged in an error message “ERROR <LastError>”. If the file size is above 50 

MB, the file size is logged in an error message as “ERROR: File too large. [<size> > 50 MB]”. 

Write file to disk 

This functionality writes any file content passed (under the second argument, “INlB5x”) into the desired file path (under the first argument, 

“XVXLNm”) on the victim’s machine. Figure 25 shows an example of C2 response to write a file onto the victim’s machine. 
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Figure 25. Example of C2 response to write to file 

The threat actor can pass “-f” parameter alongside the file path in the first argument to forcefully create the respective file path, for instance, if 

the file directory does not already exist. 

If the file path does already exist, the malware negates the READ_ONLY file attribute of the file before writing the file content to ensure a successful 

file operation. If the file write operation is successful, then a success message is logged as “<filename> OK \n” otherwise an error message is logged 

as “<filename> FAIL\n”. If the passed content is empty, then an error message “<filename> EMPTY\n” is returned. 

Launch process or payload 

This functionality launches a new process as a specified command line (under the first argument, “XVXLNm”), essentially allowing any arbitrary 

executable on disk to be executed. The first argument is parsed as command line arguments (white-space delimited tokens) to extract the 

executable file to be launched and any arguments passed. Additionally, the first argument can contain multiple additional parameters that alters 

the backdoor’s behavior, namely: 

• Waiting for the child process in 100 millisecond intervals. This is specified via “-w” argument and it can take a parameter to specify 

the number of minutes to wait. For instance, “-w=1” would cause the backdoor process to wait for 1 minute, unless the launched 

child process exits sooner. 

• Log output and error messages from launched child process (and all its subsequent subprocesses). This is specified via “-o” 

argument. To achieve this, the standard input, error, and output are redirected via anonymous pipes. 

• File path to write custom payload into. This is specified via “-f” and its functionality is explained further below. 

• An unused parameter “-bc”. The functionality of this parameter is unknown.  

These additional parameters are not passed into the child process command line that’s launched. Figure 26 shows an example of C2 response to 

launch a process. 
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Figure 26. Example of C2 response to launch process 

This functionality also supports execution of custom payloads. To do so, the payload must be passed through the second argument (“INlB5x“). The 

backdoor will write the payload to disk before execution and there are two ways the backdoor will determine the file path to write the payload 

into: 

• If “-f” parameter was specified in the first argument, it will parse the specified file path passed (white-delimited parameter 

following -f). 

• If “-f” parameter was not specified and/or file path was not provided, then it will generate a temporary file name with a “00” prefix 

(via GetTempFileNameW()) under temporary folder (via GetTempPathW()). 

This functionality essentially makes the backdoor modular by allowing additional modules to be dropped and executed. Figure 27 shows an 

example of C2 response to launch a custom payload on the victim’s machine. 

 

Figure 27. Example of C2 response to launch custom payload 
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To launch the process, the backdoor will combine the specified executable file and list of arguments into a string and call CreateProcessW() passing 

the string as a command line. If the process was launched successfully, then a success message is logged as “PID : <PID>\n”. If the wait flag was 

set, the backdoor will wait for the specified amount of time or until the child process exits. If the output flag was set, it will log the output/error 

received from the child process(es) as “----------------\n<OUTPUT/ERROR>”. 

If the time out is reached and the child process is still running, it will forcefully terminate the child process and all its subsequent child processes 

and log “\n----------------\nTerminateProcess\n”, otherwise if the child process had already exited, it will log the exit code as “\n----------------

\nExitCode : <exitcode>\n”. 

Additionally, there are five error messages that the backdoor will log within this functionality, namely: 

• If the payload can’t be written to disk, it will log “1: <filename> <LastError>\n” 

• If the standard output pipe can’t be created, it will log “2: 0“ 

• If the standard input pipe can’t be created, it will log “3: 0“ 

• If the standard error pipe can’t be created, it will log “4: 0“ 

• If process creation fails, it will log “5: 0“. 

Execute shell command 

This functionality executes any shell command specified under the first argument (“XVXLNm”) by using the functionality “Launch process or 

payload” mentioned in an earlier section and passing “-w” and “-o” parameters to wait and log the received process output. Figure 28 shows an 

example of C2 response to execute a shell command on the victim’s machine. 

 

Figure 28. Example of C2 response to execute shell command 

Upgrade backdoor 

This functionality allows the backdoor to upgrade itself by passing a newer version under the second argument (“INlB5x”). Figure 29 shows an 

example of C2 response to upgrade the backdoor. 
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Figure 29. Example of C2 response to upgrade backdoor 

The backdoor will rename the existing backdoor binary by adding “.old” extension using MoveFileExW() function. It will drop the new backdoor 

binary on disk using the existing backdoor’s file path. It will then re-use the file attributes and file time attributes of the old backdoor on the newly 

created backdoor binary. 

It will then launch the new backdoor binary in the same fashion as the dropper would, that is by calling rundll32 and passing the backdoor’s first 

export ordinal (#1) with a “-d” argument, essentially launching the upgraded binary with the initial run flag. 

If the backdoor binary is launched successfully, it will log a success message “PID : <NewProcessId>\n”. Otherwise, there are three error messages 

that the backdoor can log, namely: 

• If the second argument is empty (i.e. no file content passed), it will log “1\n”. 

• If the old backdoor binary could not be moved, it will log “2: <LastError>\n” 

• If the new binary could not be created, it will log “3: <LastError>\n” 

The task thread will then set the main event object that’s used for synchronization across the process to a signaled state in a similar fashion 

explained under section “Uninstall backdoor”.  

It is worth noting that this functionality was only observed in the latest version of the analyzed backdoor. This version also spawns a thread upon 

launch to delete the old version of the backdoor (with the .old extension), given that “-d” argument was passed into it (which is typically the case 

during the backdoor’s first execution). To achieve this, the backdoor tries several methods, firstly removing the file’s READ_ONLY attribute (if this 

attribute exists). It then attempts to delete the file using DeleteFileW and if that fails, it retries 45 more times within a loop that contains a 1 

second sleep between retries. As a final resort, the file will be set to be removed upon reboot by calling MoveFileExW()and setting dwFlags as 

MOVEFILE_DELAY_UNTIL_REBOOT and lpNewFileName as NULL, a method seen in the Kapeka dropper as well (described in section “Dropper 

analysis”). Figure 30 shows code snippet of file deletion method used by the backdoor to remove older version of itself. 
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Figure 30. Code snippet used to remove old backdoor 

This functionality could potentially allow the threat actor to first infect victims with a skeleton version of the backdoor in order to fingerprint them 

and only drop a more complete version of the backdoor if the victim is deemed an appropriate target. 

Other behavior 

The dropper and the backdoor implement stackstrings to obfuscate some of the strings used in the malware. Figure 31 shows examples of 

stackstrings seen in the backdoor. 
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Figure 31. Stackstrings in the backdoor 

Before initialization, the backdoor sleeps for an arbitrary amount of time using WaitForSingleObjectEx() and waitable timer. 

The backdoor monitors for log off5 events by monitoring for WM_QUERYENDSESSION messages through a Window procedure callback that’s 

created in a separate thread. Figure 32 shows the implemented callback function. If this message is received, the thread will set the main event 

object that’s used for synchronization across the process to a signaled state, causing the backdoor to run its exit routine. The only noteworthy 

function of the exit routine is its ability to persist the backdoor’s current state (C2 configuration, tasks, and task results) into the registry value 

(“Seed”), which houses the backdoor’s configuration on the victim machine. This retains the latest state of the backdoor so that it can be re-

processed once the machine is restarted, and the backdoor is re-launched.  It is worth noting that the backdoor also sets its process shutdown 

parameters as SHUTDOWN_NORETRY during its initialization phase, ensuring that it does not become a blocking process during a log off in order 

to remain stealthy. 

 
5 https://learn.microsoft.com/en-us/windows/win32/shutdown/logging-off 

https://learn.microsoft.com/en-us/windows/win32/shutdown/logging-off
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Figure 32. Implemented callback function to monitor log off events 
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SANDWORM ATTRIBUTION ANALYSIS 
To determine the origin and goal of Kapeka, we examined the possible link established between Kapeka and Sandworm group. Based on publicly 

available reporting, the closest toolkit WithSecure found that shared similarities with Kapeka was GreyEnergy. In this section, we will highlight 

some of the similarities and lay several propositions to encourage further research. Information regarding GreyEnergy referenced throughout this 

section are based on reports from ESET6, Trellix (FireEye)7, and Nozomi Networks8. 

GreyEnergy is a modular backdoor thought to be part of Sandworm’s arsenal, with GreyEnergy itself being regarded as a likely successor to the 

BlackEnergy toolkit that the threat group was initially known for utilizing in their early attacks. At a high-level, GreyEnergy consists of a dropper 

component that is responsible for dropping and executing the GreyEnergy backdoor, as well as setting up the backdoor’s persistence and removing 

itself from disk. Two versions of the GreyEnergy toolkit have been identified, the main GreyEnergy backdoor and a lighter version known as 

GreyEnergy “mini”. 

There are some conceptual overlaps between Kapeka and GreyEnergy, namely: 

• Both toolkits consist of a dropper component that has the main backdoor embedded within. The dropper component is 

responsible for dropping & setting up the backdoor’s persistence, then removing itself from disk. However, the GreyEnergy 

dropper is packed, while the Kapeka dropper is not. 

• The GreyEnergy mini and Kapeka backdoors are DLL files with a masqueraded extension to make them appear legitimate, with 

GreyEnergy mini using “.db” and Kapeka using “.wll”. Both backdoors are also dropped into a folder named “Microsoft” in the file 

directory with the parent directory commonly being C:\ProgramData. 

• Both backdoor DLLs are exported and called by the first ordinal (#1) via rundll32. This is an uncommon yet not unique method of 

exporting DLLs. 

• Both droppers look for a legitimate Windows DLL on disk and set the dropped backdoor’s file time to the same as that DLL. 

GreyEnergy also modifies the file description of the backdoor, while Kapeka doesn’t. 

• GreyEnergy and Kapeka use a similar custom algorithm to structure data that’s sent to their C2. Both generate a unique AES-256 

key per communication to encrypt the data that’s to be sent. The AES key is then encrypted via an embedded RSA-2048 key. In 

each case the encrypted key and its length as well as the encrypted data and its length are structured in a similar format, though 

there are some subtle differences. Kapeka XOR encodes the data and appends random data, while GreyEnergy encodes the data 

via base64. Figure 33 shows a comparison between the two custom structures. 

 
6 https://web-assets.esetstatic.com/wls/2018/10/ESET_GreyEnergy.pdf 
7 https://web.archive.org/web/20190508165354/https:/www.fireeye.com/blog/threat-research/2018/07/microsoft-office-vulnerabilities-used-to-distribute-
felixroot-backdoor.html 
8 https://assets-global.website-files.com/645a4534705010e2cb244f50/649131e3441ad51e4b0da155_Nozomi-Networks-GreyEnergy-Dissecting-the-
Malware.pdf 
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• The GreyEnergy dropper with service DLL persistence looks for an appropriate Windows service to mimic and names the dropped 

backdoor DLL with a randomly generated four-character name followed by either ‘srv’ or ‘svc’. One Kapeka backdoor sample we 

found in-the-wild that was bundled with a scheduled task from an infected machine 

(97e0e161d673925e42cdf04763e7eaa53035338b) was called ‘wslsrv.dll’. This naming convention did not follow the algorithm 

found in the droppers we analyzed. Furthermore, the scheduled task name was ‘OneDrive’ (instead of Sens Api) and the command 

line was slightly different. It is plausible that a different dropper which shares some high-level similarities with the GreyEnergy 

dropper may have been used.  

• The dropper component in GreyEnergy checks and creates mutex based on the GUID value fetched via GetCurrentHwProfileA, as 

does the backdoor component in Kapeka. Utilizing GetCurrentHwProfileA() to generate a mutex value is not a common technique 

in other threats we have observed. 

• Some configuration components of Kapeka also match GreyEnergy. Both utilize a configuration structure that holds a defined 

maximum alive time and a pair of fields that hold the high and low order part of system time. The maximum alive time defines the 

maximum number of days with no successful C2 connection before the backdoors will remove themselves. The system time pair 

is generated & updated at runtime by the backdoor and used to keep track of the backdoor’s alive time and last successful C2 poll. 

This specific implementation is not a common technique in other threats we have observed. Moreover, both backdoors also 

contain a 16-byte hexadecimal string that is likely some form of identifier. Figure 34 compares the hexadecimal strings found in 

GreyEnergy and Kapeka. Furthermore, figure 35 shows the mentioned similarity between the configuration components of Kapeka 

and GreyEnergy. 

• Kapeka utilizes obfuscated names in its configuration to make analysis more difficult, as do some versions of GreyEnergy. Figure 

36 shows a comparison of obfuscated field names seen in GreyEnergy as well as Kapeka’s configuration. 
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Figure 33. Comparison between GreyEnergy and Kapeka's C2 custom structure 
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Figure 34. Example of hexadecimal strings found in GreyEnergy and Kapeka samples 
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Figure 35. Similarities between GreyEnergy and Kapeka's C2 configuration 
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Figure 36. Example of obfuscated field names found in GreyEnergy and Kapeka's configuration 

While there are similarities between the two, there are also differences such as, but not limited to: 

• The backdoor commands and their implementations are vastly different. 

• Kapeka persists its C2 configuration via registry, while GreyEnergy does so via a file on-disk. 

• GreyEnergy utilizes WMI to fingerprint the victim, while Kapeka utilizes Windows API and registry. 

• For persistence, GreyEnergy mini utilizes a shortcut file via Startup folder, GreyEnergy utilizes Windows service via ServiceDLL 

registry, while Kapeka utilizes either autorun registry or scheduled task. 

Beyond functional similarity between the two toolkits, we examined other indicators relating to Kapeka, GreyEnergy, and Sandworm. 

While we did not observe any post-compromise activity following the detection of Kapeka in our upstream due to limited telemetry, Kapeka has 

been reportedly9 used in destructive attacks including ransomware campaigns. We correlated publicly reported incidents temporally that were 

 
9 https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Backdoor:Win64/KnuckleTouch.A!dha 

https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Backdoor:Win64/KnuckleTouch.A!dha
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ransomware-related and attributed to Sandworm group within the same time frame, and we observed some overlaps with attacks leading to the 

deployment of Prestige ransomware. 

It had been reported10 that Prestige ransomware was used by Sandworm in destructive attacks against transportation and logistics companies in 

Ukraine and Poland in October 2022, with an increase in precursor activity in September 202211. The victim organization in which we observed 

Kapeka was also a logistics company in Eastern Europe, the backdoor was spotted in late September 2022, and the other Kapeka samples found 

in-the-wild were observed in Ukraine. Separately, the geographical targeting of Prestige ransomware and GreyEnergy overlap as well, as both 

were reportedly used in Ukraine and Poland. GreyEnergy has also been observed as a precursor in destructive attacks. 

 

Figure 37. Overlaps between Kapeka, GreyEnergy, Prestige ransomware attacks. 

 
10 https://www.microsoft.com/en-us/security/blog/2022/10/14/new-prestige-ransomware-impacts-organizations-in-ukraine-and-poland/ 
11 https://blogs.microsoft.com/on-the-issues/2022/12/03/preparing-russian-cyber-offensive-ukraine/ 
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Figure 37 summarizes our findings related to Kapeka, GreyEnergy, and Prestige ransomware attacks that are all reportedly linked to Sandworm 

group. We do not believe these findings are substantial enough to form a conclusive assessment or attribution, however we believe several non-

competing hypotheses can be proposed that lay the foundation for further research: 

• Kapeka is part of Sandworm’s latest arsenal, serving as a flexible backdoor likely used as part of wider espionage campaigns to 

support intelligence collection that can also lead to sabotage operations at later stages, including ransomware attacks. 

• Kapeka was likely used in intrusions that led to the deployment of Prestige ransomware in late 2022. 

• The toolkit is developed and employed as part of the ongoing Russia-Ukraine conflict, with targets mostly in Eastern and Central 

Europe. 

• Kapeka is a successor to GreyEnergy backdoor, as GreyEnergy is considered a successor to BlackEnergy. The lowered sophistication 

observed from BlackEnergy to GreyEnergy can be witnessed from GreyEnergy to Kapeka as well.  
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CONCLUSION 
Kapeka is a previously unreported backdoor that has been sporadically spotted in Eastern Europe since at least mid-2022. It is a flexible backdoor 

with all the necessary functionalities to serve as an early-stage toolkit for its operators, and also to provide long-term access to the victim estate.  

The backdoor’s victimology, infrequent sightings, and level of stealth and sophistication indicate APT-level activity, highly likely of Russian origin. 

However, due to sparsity of data at the time of writing the infection vector, the threat actor, and the actor’s ‘actions on objectives’ cannot be 

conclusively stated. Nevertheless, we examined multiple data points that strongly suggests a link between Kapeka and Sandworm. 

Sandworm is a prolific Russian nation-state threat group notorious for their destructive attacks against Ukraine in pursuit of Russian interests. 

Based on overlaps in functionality we have noted between GreyEnergy (a toolkit thought to be part of Sandworm’s arsenal) and Kapeka, as well 

as the latest events publicly attributed to Sandworm since the 2022 Russian invasion of Ukraine, we hypothesize Kapeka is a new addition to 

Sandworm’s arsenal. It was likely used in intrusions that led to the deployment of Prestige ransomware in late 2022. It is probable that Kapeka is 

a replacement for GreyEnergy, which itself was likely a replacement for BlackEnergy in Sandworm’s arsenal. Kapeka’s development and 

deployment likely follows the ongoing Russia-Ukraine conflict, with Kapeka being likely used in targeted attacks across Central and Eastern Europe 

ever since the illegal invasion of Ukraine in 2022.  

WithSecure last observed Kapeka in May 2023. It is uncommon for threat groups, especially nation-state, to cease operations or dispose tooling 

altogether, particularly before they are publicly documented. Therefore, Kapeka's infrequent sightings can be a testament for its meticulous usage 

by an advanced persistent actor (APT) in operations that span over years, such as the Russia-Ukraine conflict. It remains to be seen whether the 

developers and operators of Kapeka will evolve with newer versions of the tool or develop and use a new toolkit with threads of similarity to 

Kapeka (such as conceptual overlaps or code re-use) like those found between Kapeka and GreyEnergy, as well as GreyEnergy and BlackEnergy. 

Regardless of Kapeka’s origin and objectives, the threat of the backdoor as documented in this report remains the same. 

While the backdoor and its dropper contain capabilities to remove all traces of compromise, WithSecure has identified several infection artifacts 

and developed several scripts to aid with analysis and detection, which can be found in the appendix section of this report. 
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APPENDICES 

MITRE ATT&CK Mapping 

Tactic Technique Description 

Execution Command and Scripting Interpreter: Windows Command Shell Kapeka uses batch script files and Windows shell 
commands for various purposes. 

Inter-Process Communication: Component Object Model Kapeka uses WinHttp 5.1 COM interface to implement 
its network communication. 

Persistence Scheduled Task/Job: Scheduled Task Kapeka creates a scheduled task called “Sens Api” or 
“OneDrive” for persistence. 

Boot or Logon Autostart Execution: Registry Run Keys / Startup 
Folder 

Kapeka creates an autorun registry called “Sens Api” for 
persistence. 

Defense evasion Masquerading: Masquerade File Type Kapeka masquerades its backdoor file as a Microsoft 
Word Add-In with its extension (.wll), but in reality it is a 
DLL file 

Obfuscated Files or Information Kapeka obfuscates some of its plaintext strings as 
stackstrings. The embedded backdoor and its 
configuration are also AES-256 encrypted. 

Obfuscated Files or Information: Embedded Payloads The dropper embeds the main backdoor binary in its 
resource section. 

Hide Artifacts: Hidden Files and Directories The dropper drops the main backdoor and removal 
batch script as hidden files on the victim’s machine. 

Indicator Removal: File Deletion The dropper will remove itself upon execution and the 
main backdoor can remove itself as well. 

Indicator Removal: Clear Persistence The backdoor can remove its own persistence. 

Modify Registry The backdoor persists its configuration via registry. 

System Binary Proxy Execution: Rundll32 Kapeka utilizes rundll32 to execute its main backdoor. 

Data Obfuscation: Junk Data Kapeka adds junk data to the data it sends to its C2. 

Virtualization/Sandbox Evasion: Time Based Evasion The backdoor sleeps for an arbitrary amount of time 
using WaitForSingleObjectEx() and waitable timer 
before initialization. 

Discovery System Time Discovery The backdoor keeps track of its last successful 
connection to its C2 by using system time. 
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System Owner/User Discovery The backdoor collects information about the user and 
organization through a set of WinAPI calls and registry 
queries. 

System Information Discovery The backdoor collections various information about the 
system through a set of WinAPI calls and registry 
queries. 

System Language Discovery The backdoor queries language and country by using 
GetLocaleInfoW() API call.  

Query Registry The backdoor steals information about the victim and 
the system via registry queries. 

Command and 
Control 

Ingress Tool Transfer The backdoor can receive and execute additional 
payloads. 

Exfiltration Over C2 Channel The backdoor can exfiltrate fingerprinted information as 
well as local files from the victim’s machine over to its 
C2. 

Encrypted Channel: Asymmetric Cryptography The backdoor uses RSA-2048 encryption as part of its 
custom algorithm to encrypt data sent to its C2. 

Encrypted Channel: Symmetric Cryptography The backdoor uses AES-256 and XOR operations as part 
of its custom algorithm to encrypt data sent to its C2. 

Proxy: Internal Proxy The backdoor detects internet proxy settings via 
WinHttpGetIEProxyConfigForCurrentUser() and uses 
them if available. 

 

Scripts 

WithSecure has developed several scripts to aid with the analysis and detection of Kapeka, namely: 

• A script to decrypt and emulate Kapeka’s network communication. This has been implemented as a custom HTTP handler for 

fakenet [https://github.com/mandiant/flare-fakenet-ng]. 

• A script to extract Kapeka’s configuration from either registry or embedded within the backdoor binary. 

• A script to extract and decrypt the backdoor binary from the dropper’s resource section. 

These can be found in WithSecure Lab’s GitHub [https://github.com/WithSecureLabs/iocs/tree/master/Kapeka]. 
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Detection opportunities 

WithSecure Elements 

WithSecure™ Elements Endpoint Protection detects multiple stages of the attack lifecycle. Our products currently offer the following detections 

against the threat: 

• Backdoor:W64/Kapeka.* 

• Trojan:BAT/Naida.* 

• Trojan-Dropper:W32/Klavdia.* 

YARA rules 

YARA rules can be found in WithSecure Lab’s GitHub [https://github.com/WithSecureLabs/iocs/tree/master/Kapeka/]. 

Indicators of compromise (IOCs) 

Indicators of compromise can be found in WithSecure Lab’s GitHub [https://github.com/WithSecureLabs/iocs/tree/master/Kapeka/]. 

Type Value Note Seen in Seen on 

Filename crdss.exe Backdoor dropper file 
name 

Ukraine June 2022 

Filename %SYSTEM%\win32log.exe Backdoor dropper file 
name 

Estonia September 2022 

SHA1 80fb042b4a563efe058a71a647ea949148a56c7c Backdoor dropper 
hash 

Ukraine June 2022 

SHA1 5d9c189160423b2e6a079bec8638b7e187aebd37 Backdoor dropper 
hash 

Estonia September 2022 

SHA1 6c3441b5a4d3d39e9695d176b0e83a2c55fe5b4e Backdoor hash Estonia September 2022 

SHA1 97e0e161d673925e42cdf04763e7eaa53035338b Backdoor hash Ukraine May 2023 

SHA1 9bbde40cab30916b42e59208fbcc09affef525c1 Backdoor hash Ukraine June 2022 

URL https[:]//103[.]78[.]122[.]94/help/healthcheck Backdoor C2 address - - 

URL https[:]//88[.]80[.]148[.]65/news/article Backdoor C2 address - - 

URL https[:]//185[.]181[.]229[.]102/home/info Backdoor C2 address - - 

URL https[:]//185[.]38[.]150[.]8/star/key Backdoor C2 address - - 

 


